
Package: clustlearn (via r-universe)
September 9, 2024

Title Learn Clustering Techniques Through Examples and Code

Version 1.0.0

Description Clustering methods, which (if asked) can provide
step-by-step explanations of the algorithms used, as described
in Ezugwu et. al., (2022) <doi:10.1016/j.engappai.2022.104743>;
and datasets to test them on, which highlight the strengths and
weaknesses of each technique, as presented in the clustering
section of 'scikit-learn' (Pedregosa et al., 2011)
<https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html>.

URL https://github.com/Ediu3095/clustlearn

BugReports https://github.com/Ediu3095/clustlearn/issues

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 4.3.0)

Imports proxy (>= 0.4-27), cli (>= 3.6.1)

Suggests deldir (>= 1.0-9)

LazyData true

Repository https://ediu3095.r-universe.dev

RemoteUrl https://github.com/ediu3095/clustlearn

RemoteRef HEAD

RemoteSha ff48cda95bd68735b4373398de3a8d41553d55ad

Contents
agglomerative_clustering . 2
db1 . 4
db2 . 4
db3 . 5

1

https://doi.org/10.1016/j.engappai.2022.104743
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://github.com/Ediu3095/clustlearn
https://github.com/Ediu3095/clustlearn/issues

2 agglomerative_clustering

db4 . 5
db5 . 6
db6 . 6
dbscan . 7
divisive_clustering . 9
gaussian_mixture . 10
kmeans . 13

Index 16

agglomerative_clustering

Agglomerative Hierarchical Clustering

Description

Perform a hierarchical agglomerative cluster analysis on a set of observations

Usage

agglomerative_clustering(
data,
proximity = "single",
details = FALSE,
waiting = TRUE,
...

)

Arguments

data a set of observations, presented as a matrix-like object where every row is a new
observation.

proximity the proximity definition to be used. This should be one of "single" (mini-
mum/single linkage), "complete" (maximum/ complete linkage), "average"
(average linkage).

details a Boolean determining whether intermediate logs explaining how the algorithm
works should be printed or not.

waiting a Boolean determining whether the intermediate logs should be printed in chunks
waiting for user input before printing the next or not.

... additional arguments passed to proxy::dist().

Details

This function performs a hierarchical cluster analysis for the n objects being clustered. The defi-
nition of a set of clusters using this method follows a n step process, which repeats until a single
cluster remains:

agglomerative_clustering 3

1. Initially, each object is assigned to its own cluster. The matrix of distances between clusters is
computed.

2. The two clusters with closest proximity will be joined together and the proximity matrix up-
dated. This is done according to the specified proximity. This step is repeated until a single
cluster remains.

The definitions of proximity considered by this function are:

single min {d(x, y) : x ∈ A, y ∈ B}. Defines the proximity between two clusters as the distance
between the closest objects among the two clusters. It produces clusters where each object is
closest to at least one other object in the same cluster. It is known as SLINK, single-link and
minimum-link.

complete max {d(x, y) : x ∈ A, y ∈ B}. Defines the proximity between two clusters as the dis-
tance between the furthest objects among the two clusters. It is known as CLINK, complete-
link and maximum-link.

average 1
|A|·|B|

∑
x∈A

∑
y∈B d(x, y). Defines the proximity between two clusters as the average

distance between every pair of objects, one from each cluster. It is also known as UPGMA or
average-link.

Value

An stats::hclust() object which describes the tree produced by the clustering process.

Author(s)

Eduardo Ruiz Sabajanes, <eduardo.ruizs@edu.uah.es>

Examples

!! This algorithm is very slow, so we'll only test it on some datasets !!

Helper function
test <- function(db, k, prox) {

print(cl <- clustlearn::agglomerative_clustering(db, prox))
oldpar <- par(mfrow = c(1, 2))
plot(db, col = cutree(cl, k), asp = 1, pch = 20)
h <- rev(cl$height)[50]
clu <- as.hclust(cut(as.dendrogram(cl), h = h)$upper)
ctr <- unique(cutree(cl, k)[cl$order])
plot(clu, labels = FALSE, hang = -1, xlab = "Cluster", sub = "", main = "")
rect.hclust(clu, k = k, border = ctr)
par(oldpar)

}

Example 1
test(clustlearn::db1, 2, "single")

Example 2
test(clustlearn::db2, 2, "sing") # same as "single"

4 db2

Example 3
test(clustlearn::db3, 4, "a") # same as "average"

Example 4
test(clustlearn::db4, 6, "s") # same as "single"

Example 5
test(clustlearn::db5, 3, "complete")

Example 6
test(clustlearn::db6, 3, "c") # same as "complete"

Example 7 (with explanations, no plots)
cl <- clustlearn::agglomerative_clustering(
clustlearn::db5[1:6,],
'single',
details = TRUE,
waiting = FALSE

)

db1 Test Database 1

Description

Test Database 1

Usage

db1

Format

db1:
A data frame with 500 rows and 2 columns.
The data points form two concentric circles.

db2 Test Database 2

Description

Test Database 2

Usage

db2

db3 5

Format

db2:
A data frame with 500 rows and 2 columns.
The data points form two moons.

db3 Test Database 3

Description

Test Database 3

Usage

db3

Format

db3:
A data frame with 500 rows and 2 columns.
The data points form three overlapping elliptical clusters of varying densities.

db4 Test Database 4

Description

Test Database 4

Usage

db4

Format

db4:
A data frame with 500 rows and 2 columns.
The data points form three diagonal parallel segments.

6 db6

db5 Test Database 5

Description

Test Database 5

Usage

db5

Format

db5:
A data frame with 500 rows and 2 columns.

The data points form three non-overlapping circular clusters of similar density.

db6 Test Database 6

Description

Test Database 6

Usage

db6

Format

db6:
A data frame with 500 rows and 2 columns.

The data points are uniformly distributed on the plane.

dbscan 7

dbscan Density Based Spatial Clustering of Applications with Noise (DB-
SCAN)

Description

Perform DBSCAN clustering on a data matrix.

Usage

dbscan(data, eps, min_pts = 4, details = FALSE, waiting = TRUE, ...)

Arguments

data a set of observations, presented as a matrix-like object where every row is a new
observation.

eps how close two observations have to be to be considered neighbors.

min_pts the minimum amount of neighbors for a region to be considered dense.

details a Boolean determining whether intermediate logs explaining how the algorithm
works should be printed or not.

waiting a Boolean determining whether the intermediate logs should be printed in chunks
waiting for user input before printing the next or not.

... additional arguments passed to proxy::dist().

Details

The data given by data is clustered by the DBSCAN method, which aims to partition the points into
clusters such that the points in a cluster are close to each other and the points in different clusters are
far away from each other. The clusters are defined as dense regions of points separated by regions
of low density.

The DBSCAN method follows a 2 step process:

1. For each point, the neighborhood of radius eps is computed. If the neighborhood contains
at least min_pts points, then the point is considered a core point. Otherwise, the point is
considered an outlier.

2. For each core point, if the core point is not already assigned to a cluster, a new cluster is created
and the core point is assigned to it. Then, the neighborhood of the core point is explored. If a
point in the neighborhood is a core point, then the neighborhood of that point is also explored.
This process is repeated until all points in the neighborhood have been explored. If a point in
the neighborhood is not already assigned to a cluster, then it is assigned to the cluster of the
core point.

Whatever points are not assigned to a cluster are considered outliers.

8 dbscan

Value

A dbscan() object. It is a list with the following components:

cluster a vector of integers (from 0 to max(cl$cluster)) indicating the cluster to which each point belongs. Points in cluster number 0 are considered outliers.
eps the value of eps used.
min_pts the value of min_pts used.
size a vector with the number of data points belonging to each cluster (where the first element is the number of outliers).

Author(s)

Eduardo Ruiz Sabajanes, <eduardo.ruizs@edu.uah.es>

Examples

Helper function
test <- function(db, eps) {

print(cl <- clustlearn::dbscan(db, eps))
out <- cl$cluster == 0
plot(db[!out,], col = cl$cluster[!out], pch = 20, asp = 1)
points(db[out,], col = max(cl$cluster) + 1, pch = 4, lwd = 2)

}

Example 1
test(clustlearn::db1, 0.3)

Example 2
test(clustlearn::db2, 0.3)

Example 3
test(clustlearn::db3, 0.25)

Example 4
test(clustlearn::db4, 0.2)

Example 5
test(clustlearn::db5, 0.3)

Example 6
test(clustlearn::db6, 0.3)

Example 7 (with explanations, no plots)
cl <- clustlearn::dbscan(
clustlearn::db5[1:20,],
0.3,
details = TRUE,
waiting = FALSE

)

divisive_clustering 9

divisive_clustering Divisive Hierarchical Clustering

Description

Perform a hierarchical Divisive cluster analysis on a set of observations

Usage

divisive_clustering(data, details = FALSE, waiting = TRUE, ...)

Arguments

data a set of observations, presented as a matrix-like object where every row is a new
observation.

details a Boolean determining whether intermediate logs explaining how the algorithm
works should be printed or not.

waiting a Boolean determining whether the intermediate logs should be printed in chunks
waiting for user input before printing the next or not.

... additional arguments passed to kmeans().

Details

This function performs a hierarchical cluster analysis for the n objects being clustered. The defini-
tion of a set of clusters using this method follows a n step process, which repeats until n clusters
remain:

1. Initially, each object is assigned to the same cluster. The sum of squares of the distances
between objects and their cluster center is computed.

2. The cluster with the highest sum of squares is split into two using the k-means algorithm. This
step is repeated until n clusters remain.

Value

An stats::hclust() object which describes the tree produced by the clustering process.

Author(s)

Eduardo Ruiz Sabajanes, <eduardo.ruizs@edu.uah.es>

10 gaussian_mixture

Examples

!! This algorithm is very slow, so we'll only test it on some datasets !!

Helper function
test <- function(db, k) {

print(cl <- clustlearn::divisive_clustering(db, max_iterations = 5))
par(mfrow = c(1, 2))
plot(db, col = cutree(cl, k), asp = 1, pch = 20)
h <- rev(cl$height)[50]
clu <- as.hclust(cut(as.dendrogram(cl), h = h)$upper)
ctr <- unique(cutree(cl, k)[cl$order])
plot(clu, labels = FALSE, hang = -1, xlab = "Cluster", sub = "", main = "")
rect.hclust(clu, k = k, border = ctr)

}

Example 1
test(clustlearn::db1, 2)

Example 2
test(clustlearn::db2, 2)

Example 3
test(clustlearn::db3, 3)

Example 4
test(clustlearn::db4, 3)

Example 5
test(clustlearn::db5, 3)

Example 6
test(clustlearn::db6, 3)

Example 7 (with explanations, no plots)
cl <- clustlearn::divisive_clustering(
clustlearn::db5[1:6,],
details = TRUE,
waiting = FALSE

)

gaussian_mixture Gaussian mixture model

Description

Perform Gaussian mixture model clustering on a data matrix.

Usage

gaussian_mixture(data, k, max_iter = 10, details = FALSE, waiting = TRUE, ...)

gaussian_mixture 11

Arguments

data a set of observations, presented as a matrix-like object where every row is a new
observation.

k the number of clusters to find.
max_iter the maximum number of iterations to perform.
details a Boolean determining whether intermediate logs explaining how the algorithm

works should be printed or not.
waiting a Boolean determining whether the intermediate logs should be printed in chunks

waiting for user input before printing the next or not.
... additional arguments passed to kmeans().

Details

The data given by data is clustered by the model-based algorithm that assumes every cluster follows
a normal distribution, thus the name "Gaussian Mixture".

The normal distributions are parameterized by their mean vector, covariance matrix and mixing
proportion. Initially, the mean vector is set to the cluster centers obtained by performing a k-
means clustering on the data, the covariance matrix is set to the covariance matrix of the data points
belonging to each cluster and the mixing proportion is set to the proportion of data points belonging
to each cluster. The algorithm then optimizes the gaussian models by means of the Expectation
Maximization (EM) algorithm.

The EM algorithm is an iterative algorithm that alternates between two steps:

Expectation Compute how much is each observation expected to belong to each component of the
GMM.

Maximization Recompute the GMM according to the expectations from the E-step in order to
maximize them.

The algorithm stops when the changes in the expectations are sufficiently small or when a maximum
number of iterations is reached.

Value

A gaussian_mixture() object. It is a list with the following components:

cluster a vector of integers (from 1:k) indicating the cluster to which each point belongs.
mu the final mean parameters.
sigma the final covariance matrices.
lambda the final mixing proportions.
loglik the final log likelihood.
all.loglik a vector of each iteration’s log likelihood.
iter the number of iterations performed.
size a vector with the number of data points belonging to each cluster.

Author(s)

Eduardo Ruiz Sabajanes, <eduardo.ruizs@edu.uah.es>

12 gaussian_mixture

Examples

!! This algorithm is very slow, so we'll only test it on some datasets !!

Helper functions
dmnorm <- function(x, mu, sigma) {

k <- ncol(sigma)

x <- as.matrix(x)
diff <- t(t(x) - mu)

num <- exp(-1 / 2 * diag(diff %*% solve(sigma) %*% t(diff)))
den <- sqrt(((2 * pi)^k) * det(sigma))
num / den

}

test <- function(db, k) {
print(cl <- clustlearn::gaussian_mixture(db, k, 100))

x <- seq(min(db[, 1]), max(db[, 1]), length.out = 100)
y <- seq(min(db[, 2]), max(db[, 2]), length.out = 100)

plot(db, col = cl$cluster, asp = 1, pch = 20)
for (i in seq_len(k)) {
m <- cl$mu[i,]
s <- cl$sigma[i, ,]
f <- function(x, y) cl$lambda[i] * dmnorm(cbind(x, y), m, s)
z <- outer(x, y, f)
contour(x, y, z, col = i, add = TRUE)

}
}

Example 1
test(clustlearn::db1, 2)

Example 2
test(clustlearn::db2, 2)

Example 3
test(clustlearn::db3, 3)

Example 4
test(clustlearn::db4, 3)

Example 5
test(clustlearn::db5, 3)

Example 6
test(clustlearn::db6, 3)

Example 7 (with explanations, no plots)
cl <- clustlearn::gaussian_mixture(

clustlearn::db5[1:20,],

kmeans 13

3,
details = TRUE,
waiting = FALSE

)

kmeans K-Means Clustering

Description

Perform K-Means clustering on a data matrix.

Usage

kmeans(
data,
centers,
max_iterations = 10,
initialization = "kmeans++",
details = FALSE,
waiting = TRUE,
...

)

Arguments

data a set of observations, presented as a matrix-like object where every row is a new
observation.

centers either the number of clusters or a set of initial cluster centers. If a number, the
centers are chosen according to the initialization parameter.

max_iterations the maximum number of iterations allowed.
initialization the initialization method to be used. This should be one of "random" or "kmeans++".

The latter is the default.
details a Boolean determining whether intermediate logs explaining how the algorithm

works should be printed or not.
waiting a Boolean determining whether the intermediate logs should be printed in chunks

waiting for user input before printing the next or not.
... additional arguments passed to proxy::dist().

Details

The data given by data is clustered by the k-means method, which aims to partition the points into
k groups such that the sum of squares from points to the assigned cluster centers is minimized. At
the minimum, all cluster centers are at the mean of their Voronoi sets (the set of data points which
are nearest to the cluster center).

The k-means method follows a 2 to n step process:

14 kmeans

1. The first step can be subdivided into 3 steps:

(a) Selection of the number k of clusters, into which the data is going to be grouped and of
which the centers will be the representatives. This is determined through the use of the
centers parameter.

(b) Computation of the distance from each data point to each center.
(c) Assignment of each observation to a cluster. The observation is assigned to the cluster

represented by the nearest center.

2. The next steps are just like the first but for the first sub-step:

(a) Computation of the new centers. The center of each cluster is computed as the mean of
the observations assigned to said cluster.

The algorithm stops once the centers in step n+1 are the same as the ones in step n. However, this
convergence does not always take place. For this reason, the algorithm also stops once a maximum
number of iterations max_iterations is reached.

The initialization methods provided by this function are:

random A set of centers observations is chosen at random from the data as the initial centers.

kmeans++ The centers observations are chosen using the kmeans++ algorithm. This algorithm
chooses the first center at random and then chooses the next center from the remaining obser-
vations with probability proportional to the square distance to the closest center. This process
is repeated until centers centers are chosen.

Value

A stats::kmeans() object.

Author(s)

Eduardo Ruiz Sabajanes, <eduardo.ruizs@edu.uah.es>

Examples

Voronoi tesselation
voronoi <- suppressMessages(suppressWarnings(require(deldir)))
cols <- c(

"#00000019",
"#DF536B19",
"#61D04F19",
"#2297E619",
"#28E2E519",
"#CD0BBC19",
"#F5C71019",
"#9E9E9E19"

)

Helper function
test <- function(db, k) {

print(cl <- clustlearn::kmeans(db, k, 100))
plot(db, col = cl$cluster, asp = 1, pch = 20)

kmeans 15

points(cl$centers, col = seq_len(k), pch = 13, cex = 2, lwd = 2)

if (voronoi) {
x <- c(min(db[, 1]), max(db[, 1]))
dx <- c(x[1] - x[2], x[2] - x[1])
y <- c(min(db[, 2]), max(db[, 2]))
dy <- c(y[1] - y[2], y[2] - y[1])
tesselation <- deldir(

cl$centers[, 1],
cl$centers[, 2],
rw = c(x + dx, y + dy)

)
tiles <- tile.list(tesselation)

plot(
tiles,
asp = 1,
add = TRUE,
showpoints = FALSE,
border = "#00000000",
fillcol = cols

)
}

}

Example 1
test(clustlearn::db1, 2)

Example 2
test(clustlearn::db2, 2)

Example 3
test(clustlearn::db3, 3)

Example 4
test(clustlearn::db4, 3)

Example 5
test(clustlearn::db5, 3)

Example 6
test(clustlearn::db6, 3)

Example 7 (with explanations, no plots)
cl <- clustlearn::kmeans(

clustlearn::db5[1:20,],
3,
details = TRUE,
waiting = FALSE

)

Index

∗ datasets
db1, 4
db2, 4
db3, 5
db4, 5
db5, 6
db6, 6

agglomerative_clustering, 2

db1, 4
db2, 4
db3, 5
db4, 5
db5, 6
db6, 6
dbscan, 7
dbscan(), 8
divisive_clustering, 9

gaussian_mixture, 10
gaussian_mixture(), 11

kmeans, 13
kmeans(), 9, 11

proxy::dist(), 2, 7, 13

stats::hclust(), 3, 9
stats::kmeans(), 14

16

	agglomerative_clustering
	db1
	db2
	db3
	db4
	db5
	db6
	dbscan
	divisive_clustering
	gaussian_mixture
	kmeans
	Index

